Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Clin Case Rep ; 11(5): e7184, 2023 May.
Article in English | MEDLINE | ID: covidwho-2326260

ABSTRACT

The identification of rhabdomyolysis as a potential fatal adverse reaction to recent COVID-19 vaccines is essential. As the symptoms of rhabdomyolysis are not specific, the threshold to actively search for this complication should be low.

2.
Biomedicines ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2305334

ABSTRACT

Fungal infections, named mycosis, can cause severe invasive and systemic diseases that can even lead to death. In recent years, epidemiological data have recorded an increase in cases of severe fungal infections, caused mainly by a growing number of immunocompromised patients and the emergence of fungal pathogenic forms that are increasingly resistant to antimycotic drug treatments. Consequently, an increase in the incidence of mortality due to fungal infections has also been observed. Among the most drug-resistant fungal forms are those belonging to the Candida and Aspergillus spp. Some pathogens are widespread globally, while others are endemic in some areas only. In addition, some others may represent a health threat for some specific subpopulations and not for the general public. In contrast to the extensive therapeutic armamentarium available for the antimicrobial chemotherapeutic treatment of bacteria, for fungal infections there are only a few classes of antimycotic drugs on the market, such as polyenes, azoles, echinocandins, and a few molecules are under trial. In this review, we focused on the systemic mycosis, highlighted the antifungal drug compounds available in the pipeline, and analyzed the main molecular mechanisms for the development of antifungal resistance to give a comprehensive overview and increase awareness on this growing health threat.

3.
Coronaviruses ; 3(2):10-22, 2022.
Article in English | EMBASE | ID: covidwho-2266130

ABSTRACT

Background: Currently, the present world is facing a new deadly challenge from a pandemic disease called COVID-19, which is caused by a coronavirus named SARS-CoV-2. To date, no drug or vaccine can treat COVID-19 completely, but some drugs have been used primarily, and they are in different stages of clinical trials. This review article discussed and compared those drugs which are running ahead in COVID-19 treatments. Method(s): We have explored PUBMED, SCOPUS, WEB OF SCIENCE, as well as press releases of WHO, NIH and FDA for articles related to COVID-19 and reviewed them. Result(s): Drugs like favipiravir, remdesivir, lopinavir/ritonavir, hydroxychloroquine, azithromycin, ivermectin, corticosteroids and interferons have been found effective to some extent, and partially approved by FDA and WHO to treat COVID-19 at different levels. However, some of these drugs have been disapproved later, although clinical trials are going on. In parallel, plasma therapy has been found fruitful to some extent too, and a number of vaccine trials are going on. Conclusion(s): This review article discussed the epidemiologic and mechanistic characteristics of SARS-CoV-2, and how drugs could act on this virus with the comparative discussion on progress and drawbacks of major drugs used till date, which might be beneficial for choosing therapies against COVID-19 in different countries.Copyright © 2022 Bentham Science Publishers.

4.
Tanaffos ; 21(2):113-131, 2022.
Article in English | EMBASE | ID: covidwho-2261787

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) causes severe pneumonia called COVID-19 and leads to severe acute respiratory syndrome with a high mortality rate. The SARS-CoV-2 virus in the human body leads to jumpstarting immune reactions and multi-organ inflammation, which has poorer outcomes in the presence of predisposing conditions, including hypertension, dyslipidemia, dysglycemia, abnormal adiposity, and even endothelial dysfunction via biomolecular mechanisms. In addition, leucopenia, hypoxemia, and high levels of both cytokines and chemokines in the acute phase of this disease, as well as some abnormalities in chest CT images, were reported in most patients. The spike protein in SARS-CoV-2, the primary cell surface protein, helps the virus anchor and enter the human host cells. Additionally, new mutations have mainly happened for spike protein, which has promoted the infection's transmissibility and severity, which may influence manufactured vaccines' efficacy. The exact mechanisms of the pathogenesis, besides molecular aspects of COVID-19 related to the disease stages, are not well known. The altered molecular functions in the case of immune responses, including T CD4+, CD8+, and NK cells, besides the overactivity in other components and outstanding factors in cytokines like interleukin-2, were involved in severe cases of SARS-CoV-2. Accordingly, it is highly needed to identify the SARS-CoV-2 bio-molecular characteristics to help identify the pathogenesis of COVID-19. This study aimed to investigate the bio-molecular aspects of SARS-CoV-2 infection, focusing on novel SARS-CoV-2 variants and their effects on vaccine efficacy.Copyright © 2022 NRITLD, National Research Institute of Tuberculosis and Lung Disease, Iran.

5.
J Clin Endocrinol Metab ; 2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2286235

ABSTRACT

Type 1 diabetes (T1D) is usually caused by immune-mediated destruction of islet beta-cells, and genetic and environmental factors are thought to trigger autoimmunity. Convincing evidence indicates that viruses are associated with T1D development and progression. During the coronavirus disease 2019(COVID-19) pandemic, cases of hyperglycemia, diabetic ketoacidosis (DKA), and new diabetes increased, suggesting that severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may be a trigger for or unmask T1D. Possible mechanisms of beta-cell damage include virus-triggered cell death, immune-mediated loss of pancreatic beta-cells, and damage to beta-cells due to infection of surrounding cells. This article examines the potential pathways by which SARS-CoV-2 affects islet beta-cells in the above three aspects. Specifically, we emphasize that T1D can be triggered by SARS-CoV-2 through several autoimmune mechanisms, including epitope spread, molecular mimicry and bystander activation. Given that the development of T1D is often a chronic, long-term process, it is difficult to currently draw firm conclusions as to whether SARS-CoV-2 causes T1D. This area needs to be focused on in terms of the long-term outcomes. More in-depth and comprehensive studies with larger cohorts of patients and long-term clinical follow-ups are required.

6.
Biomed Pharmacother ; 158: 114096, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2257259

ABSTRACT

BACKGROUND: Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS: The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS: Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-ß/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION: This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.


Subject(s)
Asthma , Ginsenosides , Hypertension, Pulmonary , Influenza, Human , Lung Neoplasms , Panax , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Humans , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Ginsenosides/chemistry , Pulmonary Fibrosis/drug therapy , Hypertension, Pulmonary/drug therapy , Influenza, Human/drug therapy , Phosphatidylinositol 3-Kinases , Pulmonary Disease, Chronic Obstructive/drug therapy , Asthma/drug therapy , Lung Neoplasms/drug therapy , Panax/chemistry
7.
Front Pharmacol ; 14: 1129817, 2023.
Article in English | MEDLINE | ID: covidwho-2282123

ABSTRACT

Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases. Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to "baicalin", "Scutellaria baicalensis Georgi", "COVID-19", "acute lung injury", "pulmonary arterial hypertension", "asthma", "chronic obstructive pulmonary disease", "pulmonary fibrosis", "lung cancer", "pharmacokinetics", "liposomes", "nano-emulsions", "micelles", "phospholipid complexes", "solid dispersions", "inclusion complexes", and other terms. Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-ß/Smad, Nrf2/HO-1, and ERK/GSK3ß pathways. Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.

8.
Brain Sci ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2250405

ABSTRACT

Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus's life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.

9.
Travel Med Infect Dis ; 52: 102535, 2023.
Article in English | MEDLINE | ID: covidwho-2245079
10.
Cardiovasc Res ; 118(10): 2253-2266, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-2032022

ABSTRACT

Cardiovascular (CV) disease (CVD) remains the leading cause of major morbidity and CVD- and all-cause mortality in most of the world. It is now clear that regular physical activity (PA) and exercise training (ET) induces a wide range of direct and indirect physiologic adaptations and pleiotropic benefits for human general and CV health. Generally, higher levels of PA, ET, and cardiorespiratory fitness (CRF) are correlated with reduced risk of CVD, including myocardial infarction, CVD-related death, and all-cause mortality. Although exact details regarding the ideal doses of ET, including resistance and, especially, aerobic ET, as well as the potential adverse effects of extreme levels of ET, continue to be investigated, there is no question that most of the world's population have insufficient levels of PA/ET, and many also have lower than ideal levels of CRF. Therefore, assessment and promotion of PA, ET, and efforts to improve levels of CRF should be integrated into all health professionals' practices worldwide. In this state-of-the-art review, we discuss the exercise effects on many areas related to CVD, from basic aspects to clinical practice.


Subject(s)
Cardiorespiratory Fitness , Cardiovascular Diseases , Cardiorespiratory Fitness/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/prevention & control , Exercise/physiology , Humans , Risk Factors
11.
Microorganisms ; 10(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2006135

ABSTRACT

Triclosan (TCS), a kind of pharmaceuticals and personal care products (PPCPs), is widely used and has had a large production over years. It is an emerging pollutant in the water environment that has attracted global attention due to its toxic effects on organisms and aquatic ecosystems, and its concentrations in the water environment are expected to increase since the COVID-19 pandemic outbreak. Some researchers found that microbial degradation of TCS is an environmentally sustainable technique that results in the mineralization of large amounts of organic pollutants without toxic by-products. In this review, we focus on the fate of TCS in the water environment, the diversity of TCS-degrading microorganisms, biodegradation pathways and molecular mechanisms, in order to provide a reference for the efficient degradation of TCS and other PPCPs by microorganisms.

12.
Diseases ; 10(3)2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1997544

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease caused by infection with the SARS-CoV-2 virus and has represented one of the greatest challenges humanity has faced in recent years. The virus can infect a large number of organs, including the lungs and upper respiratory tract, brain, liver, kidneys, and intestines, among many others. Although the greatest damage occurs in the lungs, the kidneys are not exempt, and acute kidney injury (AKI) can occur in patients with COVID-19. Indeed, AKI is one of the most frequent and serious organic complications of COVID-19. The incidence of COVID-19 AKI varies widely, and the exact mechanisms of how the virus damages the kidney are still unknown. For this reason, the purpose of this review was to assess current findings on the pathogenesis, clinical features, therapy, and mortality of COVID-19 AKI.

13.
Physiol Int ; 109(2): 135-162, 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1963104

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the pulmonary manifestations, COVID-19 patients may present a wide range of neurological disorders as extrapulmonary presentations. In this view, several studies have recently documented the worsening of neurological symptoms within COVID-19 morbidity in patients previously diagnosed with neurodegenerative diseases (NDs). Moreover, several cases have also been reported in which the patients presented parkinsonian features after initial COVID-19 symptoms. These data raise a major concern about the possibility of communication between SARS-CoV-2 infection and the initiation and/or worsening of NDs. In this review, we have collected compelling evidence suggesting SARS-CoV-2, as an environmental factor, may be capable of developing NDs. In this respect, the possible links between SARS-CoV-2 infection and molecular pathways related to most NDs and the pathophysiological mechanisms of the NDs such as Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, and amyotrophic lateral sclerosis will be explained.


Subject(s)
COVID-19/complications , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/virology , SARS-CoV-2 , Aged , Alzheimer Disease/genetics , Alzheimer Disease/virology , Humans , Parkinson Disease/genetics , Parkinson Disease/virology
14.
Cells ; 11(15)2022 07 22.
Article in English | MEDLINE | ID: covidwho-1957235

ABSTRACT

Autophagy is a highly conserved lysosomal degradation pathway active at basal levels in all cells. However, under stress conditions, such as a lack of nutrients or trophic factors, it works as a survival mechanism that allows the generation of metabolic precursors for the proper functioning of the cells until the nutrients are available. Neurons, as post-mitotic cells, depend largely on autophagy to maintain cell homeostasis to get rid of damaged and/or old organelles and misfolded or aggregated proteins. Therefore, the dysfunction of this process contributes to the pathologies of many human diseases. Furthermore, autophagy is highly active during differentiation and development. In this review, we describe the current knowledge of the different pathways, molecular mechanisms, factors that induce it, and the regulation of mammalian autophagy. We also discuss its relevant role in development and disease. Finally, here we summarize several investigations demonstrating that autophagic abnormalities have been considered the underlying reasons for many human diseases, including liver disease, cardiovascular, cerebrovascular diseases, neurodegenerative diseases, neoplastic diseases, cancers, and, more recently, infectious diseases, such as SARS-CoV-2 caused COVID-19 disease.


Subject(s)
COVID-19 , Animals , Autophagy/physiology , Homeostasis , Humans , Lysosomes/metabolism , Mammals , SARS-CoV-2
16.
Biomed Pharmacother ; 153: 113256, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936093

ABSTRACT

Punica granatum L (pomegranate) is one of the Mediterranean medicinal plants that has been used for generations in treating ulcers, diarrhea, and male infertility. Increasing evidence has revealed that pomegranate possesses myriads of pharmacological activities such as anti-diabetic, anti-tumor, anti-inflammatory, anti-malaria, anti-fibrotic, anti-fungal, anti-bacterial, and other effects. Consumption of pomegranate could be used to improve gut microbiota, and therefore prevent obesity and diabetes. The mechanisms of actions of pomegranate, mainly involve nuclear factor-erythroid factor 2-related factor 2 (Nrf2), nuclear factor kappa B (NF-kB), and mitogen-activated protein kinase (MAPK) signaling pathways. In recent times, in silico molecular docking studies demonstrated that pomegranate extract and or its phytochemicals are potential inhibitors of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) spike protein and angiotensin-converting enzyme 2 (ACE2) receptor contact. Also, some clinical trials have indicated that pomegranate can be consumed for alleviation of non-alcoholic fatty liver disease, metabolic syndrome, dental infections, and menopausal symptoms. To date, active compounds, viz. alkaloids, anthocyanidins, tannins, flavonoids, phenolics, proanthocyanidins, sterols, terpenes, terpenoids, xanthonoids, fatty acids, organic acids, lignans, saccharides, and vitamin C have been isolated from pomegranate. Therefore, the current review article aimed to gather and presents an update on the ethnomedicinal uses, pharmacological activities, phytochemistry, and molecular mechanisms of Punica granatum L. This knowledge is of paramount importance in the future in drug discovery for the development of novel natural drugs for the treatment of various ailments.


Subject(s)
COVID-19 Drug Treatment , Lythraceae , Pomegranate , Anti-Inflammatory Agents/pharmacology , Humans , Lythraceae/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2
17.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1928613

ABSTRACT

Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like 'Euphorbia neriifolia', 'phytoconstituents', 'traditional uses', 'ethnopharmacological uses', 'infectious diseases', 'molecular mechanisms', 'COVID-19', 'bacterial infection', 'viral infection', etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, ß-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3ß-friedelanol, 3ß-acetoxy friedelane, 3ß-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and ß-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Communicable Diseases, Emerging , Euphorbia , Communicable Diseases, Emerging/drug therapy , Ethnobotany , Ethnopharmacology , Humans , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytotherapy , Plant Extracts/pharmacology
19.
Front Mol Biosci ; 9: 803314, 2022.
Article in English | MEDLINE | ID: covidwho-1705065

ABSTRACT

Despite the passage of more than 17 months from the beginning of the COVID-19 pandemic, challenges regarding the disease and its related complications still continue in recovered patients. Thus, various studies are underway to assay the long-term effects of COVID-19. Some patients, especially those with severe symptoms, experience susceptibility to a range of diseases and substantial organ dysfunction after recovery. Although COVID-19 primarily affects the lungs, multiple reports exist on the effect of this infection on the kidneys, cardiovascular system, and gastrointestinal tract. Studies have also indicated the increased risk of severe COVID-19 in patients with diabetes. On the other hand, COVID-19 may predispose patients to diabetes, as the most common metabolic disease. Recent studies have shown that Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) binds to Angiotensin-Converting Enzyme 2 (ACE2) receptors, which are expressed in the tissues and organs involved in regulating the metabolic status including pancreas, adipose tissue, gastrointestinal tract, and kidneys. Therefore, SARS-CoV-2 may result in metabolic disturbance. However, there are still many unknowns about SARS-CoV-2, which are required to be explored in basic studies. In this context, special attention to molecular pathways is warranted for understanding the pathogenesis of the disease and achieving therapeutic opportunities. Hence, the present review aims to focus on the molecular mechanisms associated with the susceptibility to metabolic diseases amongst patients recovered from COVID-19.

20.
EPMA J ; 12(3): 307-324, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1544595

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. Drug therapy is one of the major treatments, but contradictory results of clinical trials have been reported among different individuals. Furthermore, comprehensive analysis of personalized pharmacotherapy is still lacking. In this study, analyses were performed on 47 well-characterized COVID-19 drugs used in the personalized treatment of COVID-19. METHODS: Clinical trials with published results of drugs use for COVID-19 treatment were collected to evaluate drug efficacy. Drug-to-Drug Interactions (DDIs) were summarized and classified. Functional variations in actionable pharmacogenes were collected and systematically analysed. "Gene Score" and "Drug Score" were defined and calculated to systematically analyse ethnicity-based genetic differences, which are important for the safer use of COVID-19 drugs. RESULTS: Our results indicated that four antiviral agents (ritonavir, darunavir, daclatasvir and sofosbuvir) and three immune regulators (budesonide, colchicine and prednisone) as well as heparin and enalapril could generate the highest number of DDIs with common concomitantly utilized drugs. Eight drugs (ritonavir, daclatasvir, sofosbuvir, ribavirin, interferon alpha-2b, chloroquine, hydroxychloroquine (HCQ) and ceftriaxone had actionable pharmacogenomics (PGx) biomarkers among all ethnic groups. Fourteen drugs (ritonavir, daclatasvir, prednisone, dexamethasone, ribavirin, HCQ, ceftriaxone, zinc, interferon beta-1a, remdesivir, levofloxacin, lopinavir, human immunoglobulin G and losartan) showed significantly different pharmacogenomic characteristics in relation to the ethnic origin of the patient. CONCLUSION: We recommend that particularly for patients with comorbidities to avoid serious DDIs, the predictive, preventive, and personalized medicine (PPPM, 3 PM) strategies have to be applied for COVID-19 treatment, and genetic tests should be performed for drugs with actionable pharmacogenes, especially in some ethnic groups with a higher frequency of functional variations, as our analysis showed. We also suggest that drugs associated with higher ethnic genetic differences should be given priority in future pharmacogenetic studies for COVID-19 management. To facilitate translation of our results into clinical practice, an approach conform with PPPM/3 PM principles was suggested. In summary, the proposed PPPM/3 PM attitude should be obligatory considered for the overall COVID-19 management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00247-0.

SELECTION OF CITATIONS
SEARCH DETAIL